Description: Python for Finance Cookbook: Over 80 powerful recipes for effective financial data analysis, 2nd Edition Use modern Python libraries such as pandas, NumPy, and scikit-learn and popular machine learning and deep learning methods to solve financial modeling problems Purchase of the print or Kindle book includes a free eBook in the PDF format Key Features Explore unique recipes for financial data processing and analysis with Python Apply classical and machine learning approaches to financial time series analysis Calculate various technical analysis indicators and backtest trading strategies Book Description Python is one of the most popular programming languages in the financial industry, with a huge collection of accompanying libraries. In this new edition of the Python for Finance Cookbook, you will explore classical quantitative finance approaches to data modeling, such as GARCH, CAPM, factor models, as well as modern machine learning and deep learning solutions. You will use popular Python libraries that, in a few lines of code, provide the means to quickly process, analyze, and draw conclusions from financial data. In this new edition, more emphasis was put on exploratory data analysis to help you visualize and better understand financial data. While doing so, you will also learn how to use Streamlit to create elegant, interactive web applications to present the results of technical analyses. Using the recipes in this book, you will become proficient in financial data analysis, be it for personal or professional projects. You will also understand which potential issues to expect with such analyses and, more importantly, how to overcome them. What you will learn Preprocess, analyze, and visualize financial data Explore time series modeling with statistical (exponential smoothing, ARIMA) and machine learning models Uncover advanced time series forecasting algorithms such as Meta's Prophet Use Monte Carlo simulations for derivatives valuation and risk assessment Explore volatility modeling using univariate and multivariate GARCH models Investigate various approaches to asset allocation Learn how to approach ML-projects using an example of default prediction Explore modern deep learning models such as Google's TabNet, Amazon's DeepAR and NeuralProphet Who this book is for This book is intended for financial analysts, data analysts and scientists, and Python developers with a familiarity with financial concepts. You'll learn how to correctly use advanced approaches for analysis, avoid potential pitfalls and common mistakes, and reach correct conclusions for a broad range of finance problems. Working knowledge of the Python programming language (particularly libraries such as pandas and NumPy) is necessary. Table of Contents Acquiring Financial Data Data Preprocessing Visualizing Financial Time Series Exploring Financial Time Series Data Technical Analysis and Building Interactive Dashboards Time Series Analysis and Forecasting Machine Learning-Based Approaches to Time Series Forecasting Multi-Factor Models Modelling Volatility with GARCH Class Models Monte Carlo Simulations in Finance Asset Allocation Backtesting Trading Strategies Applied Machine Learning: Identifying Credit Default Advanced Concepts for Machine Learning Projects Deep Learning in Finance Shipping We offer FREE shipping on specialized orders! We ship within Three business days of payment, usually sooner. We use a selection of shipping services such as UPS, FedEx, USPS etc. We only ship to the lower 48 states, no APO/FPO addresses or PO Boxes allowed. Local pickups and combined shipping options are not provided at this time. Return You can return a product for up to 30 days from the date you purchased it. Any product you return must be in the same condition you received it and in the original packaging. Please keep the receipt. Payment We accept payment by any of the following methods:PayPalPlease pay as soon as possible after winning an auction, as that will allow us to post your item to you sooner!Credit/Debit CardPlease pay within 2 days of buying now, as it makes it easier to ship as fast as possible to you! Feedback Customer satisfaction is very important to us. If you have any problem with your order, please contact us and we will do our best to make you satisfied. Contact Us If you have any queries, please contact us via ebay. We usually respond within 24 hours on weekdays. Please visit our eBay store to check out other items for sale! Thank you for shopping at our store.
Price: 56.2 USD
Location: San Gabriel, California
End Time: 2024-11-08T00:18:56.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
Return policy details:
EAN: 9781803243191
ISBN: 9781803243191
Package Dimensions LxWxH: 9.29x7.56x1.97 Inches
Weight: 3.11 Pounds
MPN: Does not apply
Model: Does not apply
Brand: None
Author: Eryk Lewinson
Publication Name: Python for Finance Cookbook : over 60 Powerful Recipes for Effective Financial Data Analysis
Format: Trade Paperback
Language: English
Publisher: Packt Publishing, The Limited
Publication Year: 2022
Type: Textbook
Number of Pages: 740 Pages